Синус - определение. Что такое Синус
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Синус - определение

ФУНКЦИИ, ВЫРАЖАЮЩИЕ ОТНОШЕНИЯ МЕЖДУ СТОРОНАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Тангенс; Косинус; Котангенс; Секанс; Косеканс; Синус (функция); Sinus; Tan; Тригонометрическая функция; Sin; Tg; Ctg; Cotan; Cosec; Csc; Sec; Синус; Формулы приведения; Тригонометрические таблицы
  • none
  • none
  • none
  • none
  • none
  • none
  • Рис. 4.<br>Тригонометрические функции острого угла
  • Определение тангенса. Марка СССР 1961 года
  • Рис. 2.<br>Определение тригонометрических функций
  • тригонометрической окружности]] с радиусом, равным единице
  • inline}}
  • Значения косинуса и синуса на окружности
Найдено результатов: 130
синус         
1. м.
Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению катета противолежащего угла к гипотенузе (в математике).
2. м.
Полость, пазуха в каком-л. органе тела (в анатомии).
СИНУС         
тригонометрическая функция угла, в прямоугольном треугольнике равная отношению катета, лежащего против данного острого угла, к гипотенузе.
СИНУС         
а, м.
1. мат. Одна из тригонометрических функций угла (обозначается sin): отношение катета, лежащего против острого угла в прямоугольном треугольнике, к гипотенузе.||Ср. КОСЕКАНС, КОСИНУС, СЕКАНС, ТАНГЕНС, КОТАНГЕНС.
2. анат. Пазуха, полость, углубление. Мозговой с. Придаточный с. носа.
синус         
С'ИНУС, синуса, ·муж. (·лат. sinus - изгиб, кривизна) (мат.). Тригонометрическая функция угла, в прямоугольном треугольнике равная отношения катета, противолежащего углу, к гипотенузе.
II. С'ИНУС, синуса, ·муж. (·лат. sinus - изгиб, кривизна) (анат.). Название различных пазух, углублений, полостей и замкнутых каналов. Венозный синус сердца.
Синус         

одна из тригонометрических функций (См. Тригонометрические функции), обозначение sin. С. острого угла в прямоугольном треугольнике называется отношение катета, лежащего против этого угла, к гипотенузе. Инд. математики С. обозначали словом "джива" (букв. - тетива лука). Арабы переделали этот термин в "джиба", который в дальнейшем превратился в "джайо" - обиходное слово арабского языка, означающее изгиб, пазуха, складка одежды, что соответствует латинскому слову sinus.

синус         
мат. отвес с конца дуги на луч (радиус). Обращенный синус, косинус, часть луча, меж дуги и синуса.
СИНУС         
в анатомии - пазуха, углубление, впадина, выпячивание, расширение, длинный замкнутый канал (напр., венозный синус, каротидный синус).
---
(лат. sinus), одна из тригонометрических функций.
Синусы         
СТРАНИЦА ЗНАЧЕНИЙ
Синусы

в анатомии, пазухи, углубления, полости, выпячивания, длинные замкнутые каналы; пазухи (каналы) твёрдой мозговой оболочки у позвоночных животных и человека, наполненные венозной кровью (см. Венозные пазухи), полости некоторых черепных костей (см. Пазухи воздухоносные). См. также Венозные лакуны, Венозный синус, Каротидный синус.

Синус (значения)         
СТРАНИЦА ЗНАЧЕНИЙ
Синусы
Си́нус (от  «изгиб, кривая, складка; полость, пазуха; залив») — математический и анатомический термин.
Синус-верзус         
  • Определение тригонометрических функций на единичной окружности. Отрезок CD описывает версинус.
  • График функции синус-верзус.
Синус верзус; Версинус; Sinus versus; Versin
Синус-верзус (sinus versus — обращённый синус; другие написания: версинус, синус версус, называется также «стрелка дуги») — одна из редко используемых тригонометрических функций. Синус-верзус угла \vartheta обозначается символом \operatorname{versin}\,\vartheta ; иногда используются обозначения \operatorname{vers}\,\vartheta, \quad \sin\,\operatorname{vers}\,\vartheta.

Википедия

Тригонометрические функции

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус ( sin x {\displaystyle \sin x} );
  • косинус ( cos x {\displaystyle \cos x} );
производные тригонометрические функции:
  • тангенс ( t g x = sin x cos x ) {\displaystyle \left(\mathrm {tg} \,x={\frac {\sin x}{\cos x}}\right)} ;
  • котангенс ( c t g x = cos x sin x ) {\displaystyle \left(\mathrm {ctg} \,x={\frac {\cos x}{\sin x}}\right)} ;
  • секанс ( sec x = 1 cos x ) {\displaystyle \left(\sec x={\frac {1}{\cos x}}\right)} ;
  • косеканс ( c o s e c x = 1 sin x ) {\displaystyle \left(\mathrm {cosec} \,x={\frac {1}{\sin x}}\right)} ;
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x {\displaystyle \tan x} , cot x {\displaystyle \cot x} , csc x {\displaystyle \csc x} . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах, но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках ± π n + π 2 {\displaystyle \pm \pi n+{\frac {\pi }{2}}} , а у котангенса и косеканса — в точках ± π n {\displaystyle \pm \pi n} .
Графики тригонометрических функций показаны на рис. 1.

Что такое синус - определение